Entanglement-Assisted Quantum Codes From Algebraic Geometry Codes

نویسندگان

چکیده

Quantum error-correcting codes play the role of suppressing noise and decoherence in quantum systems by introducing redundancy. Some strategies can be used to improve parameters these codes. For example, entanglement provide a way for achieve higher rates than one obtained means traditional stabilizer formalism. Such are called entanglement-assisted (EAQEC) In this paper, we utilize algebraic geometry construct several families EAQEC derived from Euclidean Hermitian construction. Three constructed here consist whose Singleton defect is equal zero, one, or two. We also with an encoding rate exceeding Gilbert-Varshamov bound. Additionally, asymptotically good towers linear complementary dual obtain consuming maximal entanglement. Furthermore, simple comparison bound demonstrates that, utilizing proposed construction, it possible generate family that exceeds

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Codes from Algebraic Geometry

Quantum error correcting codes are essential for successful implementation of quantum computers. We look into the theory of a particular class of quantum codes that look promising called quantum stabilizer codes. The aim of this project is to study and construct efficient quantum stabilizer codes from algebraic geometry codes.

متن کامل

Entanglement-assisted quantum MDS codes constructed from negacyclic codes

Recently, entanglement-assisted quantum error correcting codes (EAQECCs) have been constructed by cyclic codes and negacyclic codes. In this paper, by analyzing the cyclotomic cosets in the defining set of constacyclic codes, we constructed three classes of new EAQECCs which satisfy the entanglement-assisted quantum Singleton bound. Besides, three classes of EAQECCs with maximal entanglement fr...

متن کامل

New Convolutional Codes Derived from Algebraic Geometry Codes

In this paper, we construct new families of convolutional codes. Such codes are obtained by means of algebraic geometry codes. Additionally, more families of convolutional codes are constructed by means of puncturing, extending, expanding and by the direct product code construction applied to algebraic geometry codes. The parameters of the new convolutional codes are better than or comparable t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2021

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2021.3113367